首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   186篇
  免费   10篇
  国内免费   2篇
测绘学   3篇
大气科学   3篇
地球物理   75篇
地质学   27篇
海洋学   60篇
天文学   18篇
综合类   1篇
自然地理   11篇
  2023年   2篇
  2022年   1篇
  2021年   2篇
  2019年   1篇
  2018年   7篇
  2017年   6篇
  2016年   14篇
  2015年   5篇
  2014年   8篇
  2013年   11篇
  2012年   4篇
  2011年   9篇
  2010年   9篇
  2009年   19篇
  2008年   8篇
  2007年   4篇
  2006年   8篇
  2005年   5篇
  2004年   4篇
  2003年   3篇
  2002年   3篇
  2001年   4篇
  2000年   5篇
  1999年   5篇
  1998年   2篇
  1996年   3篇
  1995年   3篇
  1994年   1篇
  1993年   3篇
  1992年   2篇
  1991年   5篇
  1990年   1篇
  1989年   3篇
  1988年   4篇
  1987年   2篇
  1986年   6篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1982年   2篇
  1981年   2篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1975年   1篇
  1974年   1篇
  1971年   1篇
排序方式: 共有198条查询结果,搜索用时 140 毫秒
191.
The damping modification factor (DMF) has been extensively used in earthquake engineering to describe the variation of structural responses due to varied damping ratios. It is known that DMFs are dependent not only on structural dynamic properties but also on characteristics of ground motions. DMFs regulated in current seismic codes are generally developed based on far-fault ground motions and are inappropriately used in structural design where pulse-like near-fault ground motions are involved. In this paper, statistical investigation of the DMF is performed based on 50 carefully selected pulse-like near-fault ground motions. It is observed that DMFs for pulse-like ground motions exhibit significant dependence on the pulse period T p in a specific period range. If the period of the structure in response is close to the pulse period, the DMF attains the same level as that derived from far-fault ground motions; as the period of the structure is considerably larger or smaller than the pulse period T p , the response reduction effect by the increased damping ratio is generally small, except for large earthquakes with long pulse periods, which exhibit significant reduction of response for structures with periods smaller than T p . Based on the statistical results of DMFs, the empirical formulas for estimating DMFs for displacement, velocity and acceleration spectra are proposed, the effect of structural period, pulse period and damping ratio are considered in the formulas, and the formulas are designed to satisfy the specific reliability requirement in the period range of 0.1 < T/T p  < 1, which is of engineering interest.  相似文献   
192.
Regional and local characteristics of active fault patterns and elevation variation throughout Honshu, Japan are characterized in terms of their fractal dimensions; this allows variation in these complex variables to be compared directly to the scalar properties of net Quaternary vertical displacement, elevation and 10- and 110-year horizontal strains. The comparisons reveal that, throughout Honshu as a whole, there is significant correlation (r=0.75) between Quaternary vertical displacement, elevation, and its fractal properties. There is poor correlation, however, of elevation and its fractal properties to horizontal crustal strain, and also between Quaternary vertical displacement and horizontal crustal strain. A slight negative correlation is observed between the fractal properties of the active fault system and horizontal crustal strain measured over 10- and 110-year time periods (–0.43 and –0.26, respectively). The correlation between the 10-year (1985–1994) and 110-year (1883–1994) area strains, 0.48, reveals the occurrence of considerable change in the distribution of regional strain over these short time frames. Local computations of the correlation between data sets made for overlapping 160 km length windows of data spaced every 20 km along analysis lines reveal internal fluctuations in the correlation between variables. The local correlation between Quaternary vertical displacement and elevation is highest through central Japan and the Kinki Triangle. There is weak negative correlation between area strain and fractal dimensions of the active fault network. The local correlation between the fractal dimensions of active faults and horizontal area strain over the recent 10-year time period averages about –0.6 through central Japan in an area that extends across the Kinki Triangle through the northern part of central Honshu and northeast across the Itoigawa Shizuoka Tectonic Line. In general, regions of greatest complexity in the active fault network are associated with persistent negative area or compressional strain. Sparsely faulted areas in general coincide with areas of positive or roughly zero area strain. The presence of negative correlation through central Japan and the Kinki Triangle area in the recent 10-year period results from a decrease of area strain within an increasingly complex active fault system that reaches maximum negative values concentrated in the Kinki Triangle during the 1985–1994 time period.  相似文献   
193.
A comparative study of ecosystems and biogeochemistry at time-series stations in the subarctic gyre (K2) and subtropical region (S1) of the western North Pacific Ocean (K2S1 project) was conducted between 2010 and 2013 to collect essential data about the ecosystem and biological pump in each area and to provide a baseline of information for predicting changes in biologically mediated material cycles in the future. From seasonal chemical and biological observations, general oceanographic settings were verified and annual carbon budgets at both stations were determined. Annual mean of phytoplankton biomass and primary productivity at the oligotrophic station S1 were comparable to that at the eutrophic station K2. Based on chemical/physical observations and numerical simulations, the likely “missing nutrient source” was suggested to include regeneration, meso-scale eddy driven upwelling, meteorological events, and eolian inputs in addition to winter vertical mixing. Time-series observation of carbonate chemistry revealed that ocean acidification (OA) was ongoing at both stations, and that the rate of OA was faster at S1 than at K2 although OA at K2 is more critical for calcifying organisms.  相似文献   
194.
The sea level difference between Kushimoto and Uragami, located to the west and east of the southern tip of the Kii Peninsula, is relatively large in periods of non-large meander path (nLMP) of the Kuroshio south of Japan in comparison with periods of large meander path (LMP). Based on this clear relationship, the sea level difference between Kushimoto and Uragami has been used as an index showing the periods of nLMP and those of LMP of the Kuroshio south of Japan. It has been pointed out that warm and saline Kuroshio water, separated from the main path of the Kuroshio, has a tendency to approach the western area off Kii Peninsula to off Muroto Peninsula in periods of nLMP, while it approaches the eastern area off Kii Peninsula to Omae-zaki in periods of LMP. On the basis of this observational evidences, the dynamic background underlaying the well-known relationship between the Kuroshio path and the sea level difference between Kushimoto and Uragami is examined in the present study, using the temperature and salinity data observed by Wakayama Prefectural Fisheries Experimental Station and Fisheries Research Institute of Mie. It is shown that deviations in vertically integrated specific volume off Kushimoto and Uragami almost equal deviations in observed sea level at Kushimoto and Uragami, respectively. It is also shown that the difference in vertically integrated specific volume between off Kushimoto and off Uragami almost equals the difference in observed sea level between Kushimoto and Uragami. As for the Kuroshio water, the high-temperature contribution is predominant for its specific volume rather than that of high salinity, which yields thermal expansion in comparison with coastal water. Because the difference in vertically integrated specific volume between off Kushimoto and off Uragami almost equals the difference in observed sea level between Kushimoto and Uragami, it is concluded that the relationship between the Kuroshio path and sea level difference between Kushimoto and Uragami is caused by the different approaching of the warm Kuroshio water between in nLMP periods and in LMP periods.  相似文献   
195.
This paper examines a real-time prediction method, aimed at application in active structural control. The examined method applies preceding seismic excitation information at a certain moment to a time-variant AutoRegressive (AR) model and uses it to predict near-future excitation information. The performances of this method and appropriate identification parameters are examined by numerical experiments. In fact, the results of these experiments show that a time-variant AR model with appropriate identification parameters has little change in low-frequency components despite change in AR coefficients. The performance of a fixed-coefficient AR model is thus examined. The results show that even a fixed-coefficient AR model can sufficiently predict 0·05-s-future excitation information. Copyright © 1999 John Wiley & Sons Ltd.  相似文献   
196.
It is important to evaluate bedload discharge and temporal changes of the bed surface, and bed deformation can be estimated during floods if the bedload discharge is properly evaluated in an arbitrary cross‐section. With the exception of grain size and its distribution within the bedload, bedload discharge has been measured using both direct and indirect methods. Bedload slot is a direct method but cannot be used to measure bedload during a flood because of volume limitations. Indirect methods require correlation between the signals and sediment volume measured using another method. In the present study, a small, automatically recording bedload sensor with an iron plate and a pair of load cells is developed in order to evaluate not only large particles but also sand particles as bedload. Bedload mass is calculated by integrating with respect to both the velocity of sediment particles and the averaged particle weight as measured by a pair of load cells, and, as an example, the velocity is estimated by the cross‐correlation function of weights measured by load cells. The applicability of the proposed sensor is discussed based on the results of flume tests in the laboratory (2014) and the observation flume of the Hodaka Sedimentation Observatory of Kyoto University in Japan (2015). The system was installed in the observation flume in November of 2012, and flume data were obtained using natural sediment particles. In particular, it was difficult to estimate the velocity of averaged bedload particles, and it was better to apply a cross‐correlation function in the laboratory tests. However, it appears that the previous estimation can estimate these velocities in the observation flume using a connecting tube and submerged load‐cell systems. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
197.
A simple non‐linear control law is proposed for reducing structural responses against seismic excitations. This law defines control force dynamics by one differential equation involving a non‐linear term that restrains the control force amplitude. If non‐linearity is neglected, the control force becomes the force in a Maxwell element, so it is called the non‐linear‐Maxwell‐element‐type (NMW) control force. The NMW control force vs. deformation relation plots hysteretic curves. The basic performance of an SDOF model with the NMW control force is examined for various conditions by numerical analyses. Furthermore, the control law is extended to fit an MDOF structural model, and an application example is shown. The computational results show that the NMW control force efficiently reduces structural responses. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   
198.
Viscoelastic (VE) dampers are sensitive to temperature, excitation frequency, and strain level. As they dissipate the kinetic energy from earthquake or wind-induced structural vibrations, their temperature increases from the heat generated, consequently softening their VE materials and lowering their dynamic mechanical properties. Temperature increase can be significant for long-duration loading, but can be limited by heat conduction and convection which depend on damper configuration. The writers analytically explored such effect on the six different dampers by using their previously proposed three-dimensional finite-element analysis method. Results provided better understanding of how heat is generated within the VE material, conducted and stored in different damper parts, and dispersed to the surrounding air. These results also led to characterization of both local (e.g., temperatures, properties, and strain energy density) and global (e.g., hysteresis loops, and stiffness) behavior of VE dampers, and provided a framework for a new simplified one-dimensional (1D) modeling approach for time-history analysis. This new proposed 1D method greatly improves the computation time of the previously proposed long-duration method coupling fractional time-derivatives VE constitutive rule with 1D heat transfer analysis. Unlike the previous method, it idealizes uniform shear strain and VE material property distributions for computational efficiency, but still simulating non-uniform temperature distribution along the thickness direction of the VE material. Despite the approximations, it accurately predicts VE damper global responses.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号